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ABSTRACT

The design of DNA and RNA sequences is critical
for many endeavors, from DNA nanotechnology, to
PCR-based applications, to DNA hybridization
arrays. Results in the literature rely on a wide variety
of design criteria adapted to the particular require-
ments of each application. Using an extensively
studied thermodynamic model, we perform a
detailed study of several criteria for designing
sequences intended to adopt a target secondary
structure. We conclude that superior design
methods should explicitly implement both a positive
design paradigm (optimize af®nity for the target
structure) and a negative design paradigm (optimize
speci®city for the target structure). The commonly
used approaches of sequence symmetry minimiza-
tion and minimum free-energy satisfaction primarily
implement negative design and can be strengthened
by introducing a positive design component.
Surprisingly, our ®ndings hold for a wide range of
secondary structures and are robust to modest
perturbation of the thermodynamic parameters used
for evaluating sequence quality, suggesting the
feasibility and ongoing utility of a uni®ed approach
to nucleic acid design as parameter sets are re®ned
further. Finally, we observe that designing for
thermodynamic stability does not determine folding
kinetics, emphasizing the opportunity for extending
design criteria to target kinetic features of the
energy landscape.

INTRODUCTION

Understanding how to design molecular structures is an
essential step in allowing technology to interface with biology
and in developing systems with increasing functional density.
Nucleic acids hold great promise as a design medium for the
construction of nanoscale devices with novel mechanical or
chemical function (1,2). Efforts are currently underway in
many laboratories to use DNA and RNA molecules for
applications in patterning (3), assembly (4±6), transport,
switching (7±9), circuitry (10), DNA computing (11) and
DNA chips (12,13). Computational sequence selection

algorithms (1,14±21) are likely to play an increasing role in
exploring this new design space.

A fundamental design problem consists of selecting the
sequence of a nucleic acid strand that will adopt a target
secondary structure. As depicted in Figure 1a, this is the
inverse of the more famous folding problem of determining
the structure (and folding mechanism) for a given sequence.
To attempt the rational design of novel nucleic acid structures,
we require both an approximate empirical physical model and
a search algorithm for selecting promising sequences based on
this model. Experimental feedback on the quality of the design
and the performance of the design algorithm can then be
obtained by folding the molecule in vitro. Alternatively, if this
feedback loop can be closed computationally by folding the
molecule in silico, the quality of sequence designs could be
rapidly assessed and improved before attempting laboratory
validation.

In designing nucleic acid sequences, we consider the two
principal paradigms illustrated in Figure 1b. Positive design
methods attempt to select for a desired outcome by optimizing
sequence af®nity for the target structure. Negative design
methods attempt to select against unwanted outcomes by
optimizing sequence speci®city for the target structure. A
successful design must exhibit both high af®nity and high
speci®city (14), so useful design algorithms must satisfy
the objectives of both paradigms, even if they explicitly
implement only one.

For some applications, it may be desirable to supplement
these thermodynamic design considerations with additional
kinetic requirements. For example, in designing molecular
machines (8), selecting sequences that fold or assemble
quickly may be crucial, since naturally occurring RNA
sequences have been observed to have persistent metastable
states (22) and theoretical models suggest that random
sequences have highly frustrated energy landscapes with
folding times that grow exponentially with sequence length
(23). Alternatively, it may be important to design interactions
with intentionally frustrated folding kinetics in order to control
fuel delivery during the work cycle (24).

The present study uses ef®cient partition function algo-
rithms and stochastic kinetics simulations to examine the
thermodynamic and kinetic properties of sequences designed
using seven methods that capture aspects of the positive and
negative design paradigms. Although several of these design
criteria have been widely used, we are not aware of any
previous attempt to assess their relative performance.
Evaluated based on thermodynamic considerations, we
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consistently observe that sequence selection methods that
implement both positive and negative design paradigms
outperform methods that implement either paradigm alone.
This trend appears to be robust to changes in both the target
secondary structure and the parameters in the physical model,
and to the choice of either RNA or DNA as the design
material. The trend does not hold when the design criteria
are judged based on kinetic considerations, as favorable
thermodynamic properties do not ensure fast folding.

Physical model

The secondary structure of a nucleic acid strand is simply a list
of base pairs between Watson±Crick complements (A´U, C´G
for RNA, and A´T, C´G for DNA) or wobble pairs (G´U, or
G´T); it may be described as a graph with connections between
paired bases on a polymer backbone, as depicted in Figure 1c.
A coarse-grained energy landscape may be de®ned over the
®nite number of all possible secondary structures, where the
properties of each secondary structure represent an ensemble
average over the three-dimensional atomic structures con-
sistent with that base-pairing graph. Decades of effort have
been invested in the formulation and parameterization of an
empirical potential for the free energy of a nucleic acid strand
based on a loop decomposition of the base-pairing graph (25±
27). Despite both conceptual and practical limitations, this
model has great utility for studying the properties of natural
and engineered RNA and DNA structures (10,27), serving as
the basis for ef®cient dynamic programming algorithms that
calculate the minimum energy structure (15,28±32) and
partition function (21,33) for a given nucleic acid strand
over a large class of secondary structures, including many
pseudoknots (see Fig. 1d). [Several of these methods are now
implemented for use via online servers (34,35).]

The folding kinetics of a sequence can be addressed by
simulating the trajectory through secondary structure space as a
continuous-time Markov process (36,37). Changes in second-
ary structure are described in terms of elementary steps
corresponding to the breaking or formation of a single base-
pair. For each elementary step, the ratio of the forward and
backward rates is de®ned to be consistent with the equilibrium
probabilities of the two end states (37,38). However, ad hoc
arguments are required to set the magnitude of the rates.
There is some evidence that qualitative properties of kinetic
simulations are insensitive to the speci®c rate model (37).

Thermodynamic and kinetic evaluation metrics

The partition function over secondary structure space provides
an ideal conceptual framework for evaluating the af®nity and
speci®city of a sequence for the target structure. If DG(s) is the
free energy of a sequence in secondary structure s, then the
probability of sampling s at thermodynamic equilibrium is
given by:

p�s� � 1

Q
eÿDG�s�=RT

where the partition function

Q �
X
s2W

eÿDG�s�=RT

is a weighted sum over the set of all secondary structures W, R
is the universal gas constant and T is the temperature. If the

probability p(s*) of folding to the target graph s* is close to
unity, then within the context of the approximate physical
model, the sequence achieves both high af®nity and high
speci®city for the target structure.

The probability p(s*) represents a very stringent design
evaluation criterion since it measures the probability that
every nucleotide matches the target graph exactly. For some
applications (e.g. those involving large DNA molecules where
some `breathing' is unavoidable), it is acceptable to use
sequences that adopt an ensemble of secondary structures
similar to the target graph. In such cases, requiring p(s*) to be
close to unity is a suf®cient but not necessary condition for
identifying satisfactory sequence designs.

A more lenient design criterion may be obtained by using a
modi®ed form of the partition function algorithm to compute
the matrix of base-pair probabilities (33) with entries Pi,j Î
[0,1] corresponding to the probability of forming base pair i´j.
By comparing the entries of P to the structure matrix S* with
entries S*i,j Î {0,1} describing the target secondary structure
s*, we may compute the average number of incorrect
nucleotides n(s*) over the equilibrium ensemble of secondary
structures W.

The derivation of n(s*) for a strand of length N proceeds as
follows. Each secondary structure s Î W is de®ned by a
symmetric N 3 N structure matrix S, with entries Si,j = 1 if s
contains base pair i´j and Si,j = 0 otherwise. We augment the
matrix S by adding an additional column with entries Si,N+1 = 1
if base i is unpaired and Si,N+1 = 0 otherwise. Hence, every row
sum is one. Using the same convention, the augmented
structure matrix corresponding to the target structure s* is
denoted S*. Given a sequence, if the probability of sampling
structure s is p(s), then the average number of incorrect
nucleotides may be expressed as follows:

n�s�� � N ÿ
X
s2W

p�s�
X

1� i�N
1� j�N�1

Si; jS
�
i; j

24 35:
This may be rearranged to give

n�s�� � N ÿ
X

1� i�N
1� j�N�1

X
s2W

p�s�Si; j

" #
S�i; j ;

where the quantity in paretheses is Pi,j, the probability of
forming base pair i´j. The extra column has entries Pi,N+1 equal
to the probability that base i is unpaired. Again, each row sum
is one. Hence the average number of incorrect nucleotides
may be expressed

n�s�� � N ÿ
X

1� i�N
1� j�N�1

Pi; jS
�
i; j :

This metric has the advantage that sequences that adopt
secondary structures similar to s* (e.g. due to breathing) are
now identi®ed as promising candidates. However, even if
n(s*) « N, it is possible that the consistent omission or addition
of certain base pairs (e.g. a hairpin stem) may cause dramatic
changes to the geometric structure. The requirement that n(s*)
« N is necessary but not suf®cient to ensure that p(s*) is close
to unity. On the other hand, n(s*) » 0 is both necessary and
suf®cient to ensure p(s*) » 1.
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We measure folding ef®ciency as the median time, t(s*), to
achieve the target structure starting from a random coil initial
condition (no secondary structure). This metric is distinct from
fast folding time when the target structure is not the minimum
free energy structure. Thus, t(s*) being small is neither
necessary nor suf®cient to imply that p(s*) is near unity. In this
paper, we consider ideal sequences to be those with p(s*) » 1,
n(s*) » 0 and t(s*) small.

Design criteria

We evaluate the following sequence design criteria:

Random. Sequences are selected to satisfy the complement-
arity requirements of the base-pairing graph, but are otherwise
random. This is a primitive approach to both positive and
negative design; compatibility with the target graph implies
some af®nity for the structure and incompatibility with many
other graphs. At least this mild level of positive and negative
design is implicit in each of the design methods that follow.

Energy minimization. Sequences are selected that attain a low
energy on the target structure using the standard energy model.
This approach implements explicit positive design.

Minimum free energy (MFE) satisfaction. Sequences are
selected so as to ensure that the target structure is the lowest
energy structure (15,19). Note that a sequence with the correct
minimum energy structure may nonetheless have a low

probability of adopting the target fold. This approach
implements explicit negative design.

Sequence symmetry minimization (SSM). Sequences are
selected so as to prohibit repeated subsequences of a speci®ed
word length (1). For subsequences that are not base-paired to
consecutive bases in the target graph (e.g. single stranded or
branched regions), the complementary words are also pro-
hibited from appearing in the design. This is a heuristic
approach to negative design, attempting to ensure speci®city
for the target structure by guaranteeing mismatches within any
subsequence of the word length that hybridizes incorrectly.

Energy minimization and SSM. Sequences are selected that
attain a low energy on the target graph, subject to the
constraint that SSM is satis®ed (14). This approach explicitly
addresses both paradigms, combining rigorous positive design
and heuristic negative design.

Probability. Sequences are selected to maximize the prob-
ability (15,17,21) of sampling the target structure p(s*).
Positive and negative design are simultaneously addressed in a
single rigorous approach.

Average incorrect nucleotides. Sequences are selected to
minimize the average number of incorrect nucleotides n(s*).
Positive and negative design are simultaneously addressed in a
single rigorous approach.

Figure 1. (a) Feedback loop for evaluating nucleic acid sequence designs and methodologies. (b) Positive and negative design paradigms. Two sequences are
evaluated using an empirical potential on both the desired target structure and an undesired structure. Using a positive design paradigm, sequence A would be
selected since it exhibits a stronger af®nity than sequence B for the target structure (i.e. lower DG). Using a negative design paradigm, sequence B would be
selected since it exhibits speci®city for the target structure while sequence A exhibits speci®city for the undesired structure. To provide a common basis for
comparison, DG = 0 for a strand with no base pairs. (c) Canonical loops of nucleic acid secondary structure: hairpin loops, stacked base pairs, a bulge loop,
an interior loop and a multiloop. These loop structures are all nested (i.e. there are no crossing arcs in the corresponding polymer graph with the backbone
drawn as a straight line). (d) A sample pseudoknot with base pairs a´f and c´h (with a < c) that fail to satisfy the nesting property a < c < h < f, yielding
crossing arcs in the corresponding polymer graph.
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In each case, a design method is obtained by employing a
heuristic search procedure to optimize one of the design
criteria. It is these design criteria that are the focus of the
present work. Examining a set of sequences obtained by
independent search processes provides a characterization of
typical performance. For the random, MFE satisfaction and
SSM methods, any sequence that satis®es the criterion is a
global minimum. For the probability and average incorrect
nucleotide methods, the global optimum is not necessarily
attained, but there is an absolute standard of success [i.e. p(s*)
» 1 or n(s*) » 0] that is frequently achieved. For methods
involving energy minimization, there is no mathematical
guarantee that the selected sequences are near the global
minimum. [For energy minimization, the global minimum
energy is achieved by at least one sequence for all structures
we consider. For energy minimization plus SSM, we veri®ed
this property only for small structures (e.g. the one in Fig. 1a)
where the global minimum was determined using a branch and
bound algorithm (39) (see Algorithms).] Implementation
details for all design methods are provided in Algorithms.

RESULTS

We now compare the performance of these seven design
methods. All designed sequences are at local minima in the
sense that no mutation of one base pair or of one unpaired base
results in a better sequence based on the given design criterion.

RNA multiloop design

Each method was used to perform 100 independent sequence
designs for a four-stem RNA multiloop comprising 71
nucleotides. Histograms of p(s*) and n(s*) are shown in
Figure 2a and b, with median values recorded in Table 1. For
random sequences, ~95% of the designs have p(s*) < 0.1 and
the median value of n(s*) is 7.2. Energy minimization
performs worse than random while MFE satisfaction and
SSM perform somewhat better. There is a dramatic improve-
ment in sequence quality using a combination of energy
minimization and SSM. Directly optimizing either p(s*) or
n(s*) leads to sequences with excellent thermodynamic
properties.

To provide an alternative view of average design perform-
ance, Figure 2c depicts the base-pairing probabilities Pi,j for
the median sequence based on p(s*). Energy minimization
completely fails to capture the connectivity of the target
structure. The other methods demonstrate the correct basic
structure with varying propensities for extending or adding
helices.

Model robustness

It is inevitable that new parameter sets will continue to be
developed for the loop-based potential functions used for these
studies (26,27). For our design methods to be useful, the
quality of a sequence must be robust to perturbations in the
approximate physical model; sequences that behave well
using many different parameter sets are more likely to perform
well in the laboratory. To examine this issue, we consider
1000 randomized potential functions for RNA where every
parameter [there are 10 692 and 12 198 non-zero parameters
for the RNA (27) and DNA (26) models, respectively] is

independently adjusted by an amount uniformly distributed on
610%, 620% or 650%.

For each design method, the top-ranked sequence based on
p(s*) is re-examined using these modi®ed potentials. The new
probabilities are shown in Figure 3, with the original
probabilities depicted as dashed lines. For perturbations
distributed uniformly on 610%, these probability distribu-
tions are peaked near the original probabilities, with the
sharpest peaks occurring for the best original sequences. The
studies with perturbations distributed uniformly on 620% and
650% demonstrate that the best sequences are surprisingly
robust, even to large perturbations.

Sequence composition

The contrasting behavior of sequences designed by different
methods is partly attributable to the variation in sequence
composition as summarized by Table 1 in terms of fraction of
CG nucleotides and average Shannon entropy per position.
[For 100 sequences designed by a given method, the
information entropy at position i is de®ned by

si � ÿ
X

h�A;C;G;U

fi�h� log4 fi�h�;

where fi(h) is the fraction of base h at position i, and si varies
between zero (all nucleotides are identical) and one (equal
number of each nucleotide). The average entropy per position
over a sequence of length N is then Si = 1,N si/N.]

As expected, the random and SSM designs have a CG
content of 50% and an average sequence entropy of
approximately one, meaning that each base is equally likely
at each position. Similar trends are observed for MFE
satisfaction, emphasizing that it is a negative design approach,
in that it does not attempt to optimize af®nity for the target
structure by increasing the CG content. In contrast, energy
minimization leads to 91% CG content with a dramatic drop in
the sequence entropy at each position. The combined approach
of energy minimization and SSM increases the average
sequence entropy and reduces the CG content to ~65%. By
comparison, designs based on direct optimization of p(s*) or
n(s*) have similar CG contents, but much lower average
sequence entropies, suggesting greater uniformity across
independent sequence designs in the placement of C and G
bases throughout the strand.

The differing design objectives of methods that implement
positive and negative design paradigms are amply illustrated
by the plot of probability versus free energy in Figure 2d.
Here, the methods of SSM and MFE satisfaction produce
sequences with DG values comparable to those for the random
method. Energy minimization naturally produces the lowest
DG values, while the methods that combine positive and
negative design sacri®ce some level of af®nity to achieve
greater speci®city and hence higher p(s*) values.

Kinetics

We estimate t(s*) as the median time to fold to s* over 1000
stochastic simulation runs as plotted against p(s*) in Figure 2e.
Each simulation was terminated after 104 dimensionless time
units had elapsed.

Sequences designed by energy minimization had very low
probabilities and failed to fold during the time frame of the

Nucleic Acids Research, 2004, Vol. 32, No. 4 1395



simulations. Random sequences also had very low prob-
abilities but did succeed in folding. On average, the negative
design approaches of MFE satisfaction and SSM yielded
sequences with improved probabilities and folding times
relative to random sequences. The combined approach of

energy minimization and SSM yielded signi®cantly higher
probabilities with folding times that are comparable to SSM.
Sequences designed by direct optimization of p(s*) or n(s*)
yielded the highest probabilities, but somewhat slower folding
times. Figure 2e illustrates two distinct classes of slow folding

Figure 2. RNA multiloop. (a) Histograms for 100 sequence designs based on probability of sampling the target graph, p(s*). The color legend applies to all
plots. (b) Histograms for the same 100 sequence designs based on average number of incorrect nucleotides, n(s*). (c) Base-pairing probabilities Pi,j for the
median sequence based on p(s*). Square sizes correspond to Pi,j > {0.5,0.05,0.005}, respectively. The target structure is identical to that obtained by optimiz-
ing probability (black) or the average number of incorrect nucleotides (not shown). (d) p(s*) versus free energy, DG(s*). Each dot corresponds to one of 100
sequences designed using each method. Each bold square corresponds to the median over the 100 sequences designed using each method. (e) p(s*) versus
median folding time, t(s*), over 1000 kinetic trajectories starting from random coil initial conditions. Dots and squares are interpreted as in (d).
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sequences: sequences with low p(s*) have energy landscapes
in which s* is not a prominent local minimum, while
sequences with high p(s*) have s* as the global minimum,
but often have highly frustrated energy landscapes, possibly
due to high CG content. Each of the three methods that
implement both positive and negative design paradigms
produce a number of sequences that appear to be excellent
based on both equilibrium and kinetic properties. However, in
general, the depth of the global minimum in the energy
landscape does not determine the kinetic accessibility of that
conformation (37).

Other RNA structures

The multiloop structure considered in Figure 2 had stems of
length a = 6 and single-stranded multiloop regions of length
b = 2. In Figure 4, the design conclusions are generalized to a
related family of multiloop structures with a Î {4,6,8}, b Î
{0,2,4}. Results for a larger RNA multiloop with 122
nucleotides and a small RNA pseudoknot with 30 nucleotides
are shown in Figures 5 and 6. We have also examined design
performance for open structures, hairpins and three-stem
multiloop structures (not shown). In all of these cases, the

Table 1. Sequence statistics for RNA multiloop designs of Figure 2

Design method p(s*) n(s*) CG
content

Entropy Top-ranked based on p(s*)

((((((..((((((.....))))))..((((((.....))))))..((((((.....))))))..))))))
Random 0.00 7.22 0.50 1.00 AUGGGUUAUCACUGCGGCUCAGUGAAACAAGCGUCGUUCGCUUGGGACGUCUAUAUAAGACGUUUACCCAU
Energy minimization 0.00 32.46 0.91 0.35 GGGGGCACGGGGGCCUCUGGCCCCCACGGCCCCCGCCGGGGGCCACGGGCCCCUCUGGGGCCCACGCCCCC
MFE satisfaction 0.16 4.14 0.50 0.99 GGCGUCUAAAGAACGAUAAGUUCUUAUGAUUCAAAGACUGAAUCUGGAUCGAGGACGUCGAUCGUGACGCC
SSM 0.08 4.89 0.50 0.99 GACGCACCCCUGAGACCGCCUCAGGUUGUAAGCGAUGGGCUUACCAGAUUCCACAUAGGAAUCAAUGCGUC
Energy minimization

and SSM
0.87 0.28 0.66 0.68 GGAGCCAAGACCUCGUUCAGAGGUCACGCCCUGGAAAACAGGGCAACCCCGCUUAGUGCGGGGACGGCUCC

Probability 0.97 0.06 0.69 0.40 GCCGGCAAGCCCUCGACUAGAGGGCAAGCGGUCGACUAGACCGCAAGCCGUCGAAUAGACGGCAAGCCGGC
Average incorrect

nucleotides
0.97 0.06 0.68 0.39 GCCGGCACGGCCUCGACUAGAGGCCAAGCCGUCGAAUAGACGGCAAGCCCUCGACUAGAGGGCAAGCCGGC

Figure 3. RNA model perturbation study. For the multiloop designs of Figure 2, the top-ranked sequence for each method based on p(s*) is re-examined
using 1000 randomized potential functions where every parameter is independently adjusted by an amount uniformly distributed on 610%, 620% or 650%.
The original probabilities are depicted as dashed lines.

Nucleic Acids Research, 2004, Vol. 32, No. 4 1397



same trends are observed in the relative performance of the
different design methods.

DNA design

For each of the non-pseudoknotted cases, analogous data are
provided for DNA in Supplementary Material (Figs 7±10 and
Table 2). Similar trends are observed in the relative performance
of the different design methods. Based on equilibrium proper-
ties, the most noticeable differences compared with the RNA
designs are: (i) the best methods no longer consistently produce

sequences with p(s*) > 0.90; and (ii) structures with helices of
length a = 4 are dif®cult to stabilize. Comparing equilibrium and
kinetic properties, higher probabilities are achievable with RNA,
and faster folding times are typical for DNA.

DISCUSSION

Relative merits of design criteria

Based on thermodynamic considerations, our results support
classifying design criteria according to the extent to which

Figure 4. RNA multiloop variations. Design performance based on (a) p(s*) and (b) n(s*) with stem a = (4,6,8) and single-stranded multiloop regions
b = (0,2,4). Surfaces show the mean values plus and minus one standard deviation for 100 independently designed sequences. The results for optimizing
average incorrect nucleotides (not shown) are nearly indistinguishable from those obtained by optimizing probability.
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they implement positive (af®nity) and negative (speci®city)
design paradigms. The design methods that implement both
paradigms (energy minimization plus SSM, probability,
average incorrect nucleotides) signi®cantly outperform other
methods. In general, the worst performance was observed for
methods that implemented neither paradigm (random) or
positive design alone (energy minimization), with somewhat
better performance observed for negative design methods
(MFE satisfaction, SSM). It is perhaps surprising that MFE
satisfaction, which performs negative design using the full
thermodynamic energy model, performs so similarly to SSM,
which neglects the model. Methods based on SSM are widely
used; our results suggest that they could be improved by
incorporating a positive design component. For many struc-
tures, high probabilities (within the context of an approximate
physical model) are obtained by directly optimizing p(s*) or
n(s*).

Optimization of equilibrium properties leads to sequences
with widely differing folding times. One simple design
approach is to ®lter sequences to identify fast or slow folders
as desired. Alternatively, new sequence selection algorithms
could be developed that explicitly take into account the
structure of the energy landscape so as to optimize the kinetic
accessibility of the global minimum energy secondary struc-
ture. Furthermore, the observed decoupling of thermodynamic
and kinetic properties suggests that there are suf®cient degrees
of freedom in sequence space to allow the design of more

complex features of the energy landscape [e.g. metastable
states (37)].

Robustness of claims

The consistency in the relative merits of these design methods
suggests a level of generality that goes beyond the structures
investigated here. It appears that it is not necessary to classify
target structures according to the demands that they place on
positive or negative design, as methods that implement both
paradigms are generally preferred. Furthermore, we observe
the same relative performance rankings for RNA and DNA
despite systematically different thermodynamic parameters
for the two materials. Evaluations of sequence quality for
either material appear robust to perturbations in the parameter
sets. This suggests that the relative merits of the design criteria
are not likely to change as the empirical models are improved.

The validity of our thermodynamic metrics is linked to the
validity of the underlying empirical models, which continue to
be re®ned and evaluated by experimental studies (27,40).
Further improvement of these models for both thermodynamic
and kinetic predictive capability will directly bene®t rational
design methods. Historically, some parameters have experi-
enced adjustments signi®cantly larger than 10% as the model
was re®ned (40). It seems likely that parameters that have
undergone extensive study (e.g. base-pair stacking) will
experience relatively small changes in the future, while
other parameters that have not received the same degree of

Figure 5. Large RNA multiloop. See caption for Figure 2a±c.
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scrutiny (e.g. coaxial stacking or dangling ends) may change
more dramatically. These adjustments could alter the design
conclusions for some target structures.

The partition function may retain utility for design in certain
cases where the energy model is known to be incorrect. For
example, pseudoknot energy models do not fully consider
geometric constraints, such as steric hindrance. Nevertheless,
it is reasonable to believe that the unknown energy correction
terms are non-negative; that is, structures violating geometric
constraints are in fact less likely than predicted. In this case,
for design targets that are geometrically unstrained (so that the
missing energy term is small), the predicted p(s*) will be
strictly lower than if the energy correction terms had been
included (since all undesired structures have non-negative
correction terms). Consequently, high-ranking sequences
based on existing models are likely to be successful in
practice.

Algorithmic considerations

Each design method consists of a criterion score and a
heuristic for optimizing that score. Evaluating the score for a
single sequence of length N is an O(N) operation for random,
energy minimization, SSM, and energy minimization plus
SSM methods. When used in an adaptive walk, each
incremental change to the score can be evaluated in constant
time. For designs based on MFE satisfaction, probability, and
average incorrect nucleotides, each score evaluation is an

O(N3) operation if pseudoknots are excluded and an O(N5)
operation if a class of pseudoknots is included. The cost of
these latter methods motivates further investigation into
optimization techniques for these scores, including ®ltering
the designs of less expensive methods (14) and assembling
larger structures hierarchically (15,19).

The random and SSM methods apply to single- or multi-
stranded structures with or without pseudoknots. The other
®ve methods require extensions to the standard empirical
potential functions to handle multiple strands or pseudoknots.
[This complication can be avoided for the two methods
involving energy minimization if only stacking energies are
considered and other loop terms (which are largely indepen-
dent of sequence) are neglected.] The dynamic programming
algorithms that underlie three of the methods also require
generalization to handle problems with multiple strands
(16,19,41).

Additional design constraints

Each design method considered here has been simpli®ed to
re¯ect the essence of the approach so as to admit easy
description, comparison and replication. In practice, there are
many additional considerations that might be used to modify
these approaches so as to satisfy various additional constraints.
For example, the designer may wish to limit the CG content, to
use a three-letter alphabet (11,42), to prohibit consecutive
stretches of a single base, to ®x the melting temperature, or to

Figure 6. RNA pseudoknot. See caption for Figure 2a±c.

1400 Nucleic Acids Research, 2004, Vol. 32, No. 4



impose various other rules of thumb that have been garnered
from years of laboratory experience. The intended function of
the design may also impose additional requirements, such as
the inclusion of subsequences of biological or biochemical
relevance (e.g. promoters, restriction sites, genomic targets,
ribozymes and deoxyribozymes). Frequently, the intention is
to design a set of strands that interact to form one of several
allowed secondary structures (e.g. a DNA beacon switches
from a hairpin to a helix in the presence of a target ligand). In
DNA computing, it is often necessary to design a combina-
torial library of strands, each of which is devoid of secondary
structure (18). These problems naturally lead to multi-
objective optimizations, where we expect positive and
negative design paradigms to continue to play a critical role.

Comparison with protein design

It is informative to compare rational nucleic acid design
efforts to those in the related area of rational protein design.
Proteins provide a rich design space with a much greater
demonstrated range of natural function than RNA and DNA.
Hence, they represent a fertile medium for the design of new
medical and industrial products. While fold af®nity and
speci®city remain fundamental design objectives for proteins,
it is not clear to what degree the explicit implementation of
both positive and negative design paradigms remains critical.
It is possible that the biochemical properties of the 20 amino
acids are suf®ciently different from those of the four
nucleotides that there is a change in the degree to which
positive and negative design methods yield collateral
speci®city and af®nity, respectively.

Computational models for protein thermodynamics cur-
rently require three-dimensional fold information. To stabilize
a given target fold, rational design efforts have focused on
positive design for fold af®nity: identify the sequence with the
lowest energy on the target fold (43±45). Explicit negative
design for fold speci®city is problematic since it is challenging
to describe the space of unwanted three-dimensional folds.
However, small ensembles of unwanted structures have been
used to explicitly design for fold speci®city (46,47).
Arguments based on the random energy model suggest that
implicit negative design may be achieved by ®xing the
sequence composition before optimization (48±50). Recently,
a novel protein fold was designed from scratch (51) by
alternately optimizing the sequence on a ®xed backbone and
the backbone for a ®xed sequence. The former step represents
positive design via energy minimization. The latter step was
implemented by searching nearby structure space and
rede®ning the target to be the minimum energy structureÐa
local form of negative design. Conceptually, it is unclear to
what extent this local structural optimization implements
global negative design. [The related hypothetical approach of
performing global structure prediction and adjusting the target
to be the MFE structure would correspond to explicit negative
design (identical to MFE satisfaction except that speci®city is
achieved by adjusting the structure instead of the sequence).]

There is currently no physical abstraction (akin to nucleic
acid secondary structure) that facilitates the prediction of
protein structure from protein sequence. Hence, the feedback
loop in Figure 1a must be closed either by experimental
structural characterization methods or by computationally
solving the protein structure prediction problem (52). This

feedback can be used both to improve particular sequence
designs and to improve the physical model on which the
design process is based. To avoid the risk of introducing
artifacts into the physical model (53), signi®cant effort has
been invested in developing exact search methods to ®nd the
globally optimal sequence based on fold af®nity, although
approximate search methods have also proved useful in
practice (45,54).

These limitations would similarly apply to nucleic acid
design based on three-dimensional atomic coordinates.
However, by designing at the level of secondary structure, it
is possible to address both positive and negative design
paradigms explicitly and to use partition function algorithms
to evaluate design quality computationally. The probability of
sampling the target graph p(s*) has a maximum value of unity.
Hence, it is no longer necessary to perform exact global
sequence searches in order to be sure that the sequence
accurately re¯ects the properties of the physical model; it is
enough to check that p(s*) is near unity or that n(s*) is
suf®ciently small.

Implications for design of nanodevices

For many design applications, nucleic acids represent an
attractive building material. Consider for example, an attempt
to design a mechanical device that performs work by moving
through a series of conformations. It would be cumbersome to
parameterize the protein design problem for mechanical
devices in terms of atomic coordinates. It also seems unlikely
that it would be possible to conditionally stabilize a sequence
of non-natural folds using positive design methods that do not
explicitly treat fold speci®city. However, DNA devices with
moving parts and complex conditional conformational
changes have already been designed (using ad hoc methods)
and experimentally demonstrated (8,10,24). We expect that
nucleic acid secondary structure will provide a productive
framework for formulating the design problem for functional
multi-state machines in a way that simultaneously addresses
positive and negative design requirements. Ultimately, the
objective of rational nucleic acid design efforts is to develop a
`molecular compiler' that takes as input a conceptual design
for a device and produces, as output, a list of nucleic acid
sequences that can be expected to assemble into the desired
structures and function robustly.

ALGORITHMS

Design methods

The parameter sets for RNA and DNA are taken from
Mfold3.1 (27), with RNA pseudoknot parameters provided by
Dirks and Pierce (21). There are currently no pseudoknot
parameters for DNA. Dangle energies were treated as the d2
option in the Vienna package (15). After each sequence search
is performed with any of the methods described below, we
check to see whether the sequence is quenched, in the sense
that no mutation of a single base pair or of a single unpaired
base improves the design according to the design metric. If the
sequence is not quenched, we run a further adaptive walk,
checking every 1000 steps to see if the sequence is quenched
and terminating the search when quenching is achieved. All
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RNA and DNA sequences used for these studies are provided
in the Supplementary Material.

Random. One hundred random sequences are independently
generated that satisfy the target graph base-pairing require-
ments.

Energy minimization. One hundred independent simulated
annealing runs with different random initial sequences are
used to identify 100 sequences with a low free energy on the
target graph according to the standard loop-based energy
model. Each search uses an exponentially decreasing tem-
perature pro®le over 106 steps, where each step corresponds to
a point mutation that is accepted if exp(±DG/RT) > r, where
DG is the change in energy and r Î [0,1] is a uniformly
distributed random number.

MFE satisfaction. An adaptive walk of 1000 steps is used to
identify a sequence for which the target structure is the lowest
energy structure. Each step consists of a random point
mutation that is accepted if the new minimum energy structure
calculated using dynamic programming methods (15,21,30±
32) does not increase the number of mismatches with the
target graph (15,19). The 100 sequences used for the study
are obtained from 100 independent searches starting from
different random initial sequences. In each case, the target is
the minimum energy structure.

SSM. One hundred sequences are independently selected that
are compatible with the target graph and satisfy SSM (1) with
word length four. For the Large Multiloop structure, the word
length was increased to ®ve to provide a larger vocabulary.

Energy minimization and SSM. A penalty term is added to the
standard energy model to bias the simulated annealing search
against sequences that violate SSM. The top-ranked sequences
from each of 100 independent searches are free of SSM
violations for the cases presented.

Probability. An adaptive walk of 1000 steps is used to search
for the sequence with the highest probability of sampling the
target structure based on dynamic programing calculations of
the partition function (21,33). Each step consists of a random
point mutation that is rejected if the probability decreases and
accepted otherwise (15,17,21). The study uses the top-ranked
sequence from each of 100 independent searches, starting
from different random initial sequences.

Average number of incorrect nucleotides. Independent adap-
tive walks based on n(s*) are used to obtain 100 sequences in a
manner analogous to the direct optimization of probability
described above.

The formula for n(s*) is a special case of a general metric,
d(p, p¢), between two ensembles of secondary structures, p and
p¢, that measures the average number of differing nucleotides
when one secondary structure is chosen from each ensemble.
By a derivation similar to the one for n(s*),

d�p; p0� � N ÿ
X

1� i�N
1� j�N�1

Pi; jP
0
i; j :

The metric of Higgs and Morgan (23) is equivalent to d(p, p)
and n(s*) = d(p, s*), where we abuse notation to indicate that
the probability distribution is concentrated entirely on the
target structure s*.

Global energy minimization

For methods involving energy minimization, there is no
mathematical guarantee that the selected sequences are near a
global minimum. For small problems, the performance of
heuristic search methods may be assessed by comparison to
the global minimum energy obtained using an exact expo-
nential-time branch-and-bound algorithm developed for
protein design (39). If a protein is modeled as a rigid
backbone with side chains represented by discrete `rotamers',
the protein design problem may be formulated as follows
(43,44): given p disjoint sets of rotamers Ri (one set for each
position i) and a potential function E(´,´) that returns the
energy between a pair of rotamers at different positions,
choose the rotamer ri Î Ri at each position that minimizes the
sum of the pairwise interaction energies between all positions:

Etotal �
X

i

X
j; j< i

E�ri; rj�:

Methods developed for protein design may be applied to
nucleic acid design if the nearest-neighbor empirical poten-
tials (26,27) are cast as a sum of pairwise terms. For the
method based on energy minimization, this is accomplished
by constructing overlapping compound rotamers from nearest-
neighbor bases and de®ning in®nite energies for neighboring
rotamer pairs with inconsistent overlaps. For energy mini-
mization plus SSM, the scope of each rotamer is increased to
the SSM word length and in®nite energies are assigned to
rotamer pairs that violate SSM.

Kinetic simulation software

Simulations are performed using Kinfold (37) with Kawasaki
rate de®nitions based on parameter sets provided by the
authors.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at NAR Online.
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